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Abstract-- Time dependent deformation and crack growth behavior under variable load conditions
are investigated in this study. Experimental observations of load/unload effects in cracked creeping
bodies are first discussed. Then a detailed analysis of a typical test result is presented. The potential
of integral parameters, including the T*-integraL to characterize this complex response, is shown,

I. INTRODUCTION

The demands for structural systems to perform reliably under severe operating conditions
continue to increase, Time dependent deformation and corresponding damage development
can be the limiting design feature for engineering structures that operate at high tempera­
tures, This is true for both monolithic and composite materials. Time dependent degradation
may also be a contributing factor to reducing life even at room temperatures and below
[see, for instance, Brust and Leis (1992)].

Most of the studies of time dependent or creep crack growth have been concerned with
simplified load conditions and constitutive relations. The methods developed by Riedel
(1987) and extended into useful and practical engineering methods by Saxena (1991) are
all based on simplified constitutive relations. Indeed, creep fracture parameters such as
C*, C~ (Riedel, 1987), Ct (Saxena, 1991), Q* (Yokobori, 1984), C(l) (Bassani, 1981), and
others, are based on the assumptions of strain hardening primary creep law and/or Norton
creep. Moreover, simple creep-fatigue engineering approaches rely on Miner's Rule, where
the effects of creep crack growth and fatigue are considered separately for predictive
purposes, as typified by laske's (1984) approach.

The approaches described above can provide useful engineering predictions of creep
crack growth, especially under constant load conditions. However, for structural com­
ponents that operate in a severe thermal environment, including thermal load-history effects
in the analysis procedure is essential for accurate crack growth predictions. Indeed, the
series of papers recently produced out of the AFWAL Materials Laboratory at Wright­
Patterson Air Force Base [see Nicholas and Weerasooriya (1985, 1986) and the references
therein] have clearly identified the importance of load history on crack growth behavior.
This work, mainly applied to crack growth in the turbine disks of advanced military gas
turbine engines made of IN 100, consisted of a series of experiments and corresponding
numerical analyses of this problem. The numerical analyses included more appropriate
constitutive relations than the simple power law type theories discussed above. Useful
design models to enable the Retirement for Cause philosophy to be used were developed
for handling the creep/fatigue interactions for the turbine disk problem.

Kim et al. (1988, 1992) have been studying creep crack growth behavior under severe
operating conditions as part of the NASA Hot Section Technology program. They have
found that near field integral parameters have the ability to characterize creep crack growth
under complex thermal mechanical loading conditions. The other simplified parameters
discussed above could not characterize the behavior.

With the above comments in mind, this paper presents an investigation of the fun­
damental processes that develop in cracked bodies which experience history dependent
loading. The paper begins by discussing some general considerations regarding cyclic creep
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and experimental observations of this process. A detailed analysis of one of the experiments
is then described. As part of this discussion, the importance of proper constitutive laws on
response, discussion of asymptotic approaches, and the ability of integral parameters to
characterize the response is provided.

2. GENERAL CONSIDERATIONS

The phemonema of creep response under stress reversals may be explained as follows.
If a uniaxial (metal) bar is heated to a temperature in the materials creep range and then
loaded, the following response may be observed [see Gittus (1975) or Murakami and Ohno
(1982) for instance]. As creep deformations advance, dislocations lose their mobility as
they pile up at obstacles or owing to the formation of various networks, i.e. hardening is
induced. These dislocations consist of two parts:

(i) a reversible part which recovers mobility upon stress reversals; and
(ii) an irreversible part, which has formed irreversible networks.

When the stress in the bar is reversed from tension to compression, or from compression
to tension, the reversible dislocations of type (i) remobilize in a direction directly opposite
to those previously immobilized. This induces a significant creep strain rate, which may be
attributed to material softening. With time, after the stress reversal, the (i) dislocations
again become immobilized, and they again start to form irreversible dislocation networks.

If a structural component, or a portion of a component experiences stress reversals,
significant creep strain rates are reintroduced. These strain rates cannot be neglected.
Moreover, classical creep constitutive laws such as Norton's law or strain hardening laws
do not account for this effect

When a cracked component is loaded in the creep regime, creep strains accumulate
from the crack tip outward. When the component is unloaded globally to zero load or even
a net positive load, a region of compressive stresses always develops near the crack tip.
That is, the tensile stresses in the crack tip region at the end of the load-hold period reverse
sign upon unloading. This happens because of elastic stress recovery that occurs in the
crack tip region where a localized creep zone has developed during the load-hold period.
These compressive stresses cause large compressive creep strain rates in the crack tip region.
Upon reloading, these compressive stresses that develop during the unload-hold period
again reverse sign to tension. This again induces large tensile creep strains, which emanate
outward from the crack tip region.

Thus, it is seen that cyclic loading in the creep regime in cracked bodies causes
significant creep strain rate reversals, and corresponding increased crack tip strain devel­
opment The size of the zone of stress reversals depends on several factors, including load
magnitude and amount of creep strain. Under severe conditions (which are increasingly
being demanded of structural components), this effect is very important

The next section describes some of the consequences of this stress reversal effect on
the creep crack growth process. This is done by observing the response of creep crack
growth specimens that are subjected to variable loads. The analysis sections will also show
vivid examples of the above-described processes.

3. EXPERIMENTS OF VARIABLE LOAD CREEP

Before reporting the experimental observations, a description of the experimental
procedure is provided.

3.1. Experimental procedure
All specimens are standard 1T compact tension specimens with a nominal thickness of

25.4 mm and width (W) of 50.8 mm, which were machined and fatigue precracked prior
to testing. The specimens had approximately 20% side grooves machined into them to
enforce straight crack growth. During the initial testing phase, one specimen experienced
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failure of one of the electric potential (EP) leads that measure crack growth rates, which
led to incomplete crack growth data. Two separate EP leads were then used for all other
tests.

For the variable load tests, the experimental technique is automated, with the load
history programmed on an Instron Servohydraulic machine. This required development of
a novel spring-loaded extensometer system. Data acquisition was triggered by load changes.
This resulted in rapid data acquisition after load changes, and slower data acquisition
during the load-hold periods, which is desired for testing the analysis results. Figure I
provides a view of the test set-up.

3.2. Experimental observations regarding variable load creep
Experimental results on three 9 Cr-Mo tests that were subjected to three different

load/unload sequences are described here. Tests have also been performed on 316 stainless
steel at two different temperatures, with results indicating the same trends as are to be
reported here. [Some of these results may be found in Brust et al. (1993) and Brust and
Majumdar (1994), and other results will be reported soon.]

Let us first examine some of the general conclusions that can be made regarding history
dependent loading in the time dependent deformation regime. Figure 2 illustrates a load
versus time sequence that was applied to one of the 9 Cr-Mo compact tension specimens
at 538c C. All were fatigue precracked prior to testing. As seen in Fig. 2a, an initial load
period of 36 h was made to ensure the development of an initial creep zone in the specimen.
The unload-hold times and subsequent reload times were continually decreased until about
90 h, after which 4-h hold periods and I-h unload periods were maintained until the
specimen failed. This assured a truly variable load history.

An enlargement of the displacement versus time history for this experiment between
325 and 365 h, after beginning the test, is illustrated in Fig. 2b. This specimen failed after
about 400 h. Another specimen was loaded to the same load level and was identical in all
other ways to the above-described specimen except for a slightly larger initial crack.
However, this specimen was held for 320 h before unload/reload occurred, and only one
cycle was applied. Figure 3 illustrates the displacement versus time history for this test.
Note that this test failed at more than 600 h.

Several important general conclusions can be drawn from these results, as follows.

• During the unload-hold period, load-point displacement recovery occurs (Fig. 2b).
This is due to the compressive stresses that develop at the crack tip during unload.
This zone of compressive stresses near the crack tip can be quite large, as was verified
through computational studies. even though the global load is never less than zero.
The compressive stress zones will be illustrated later.

• After reload, the displacement rates increase as compared with the rates during the
previous loading period. This is clearly seen in Figs 2b and 3. Note also that the
displacement just after reloading is always smaller than the corresponding value just
before unloading.

• Load history effects significantly decrease life as compared with the nearly constant
load (only one unload) test, i.e. in this case the constant load test lasted nearly 1.5
times as long.

Further evidence of this behavior can be seen by observing the results of another test
on 9 Cr-Mo steel, also at 538C. However, the applied load was smaller than in the above
tests, and the load sequence is as illustrated in Fig. 4a. As seen, the unload-hold times were
only 5 min (as compared with the minimum hold time of I h in Fig. 2a). Figure 4b illustrates
the load-point displacement response of this specimen before crack growth began. This was
a long test, taking over 30 days, and crack growth began at about 192 h after the test began.
Figure 4b shows that, as with Figs 2b and 3, the load-point displacement rates (i.e. slope
of the curve) increase after an unload compared with the rates before unloading, even
before crack growth begins. However, as seen in Fig. 4c, the change in displacements after
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an unload/load sequence becomes greater as time proceeds. This particular test has been
completely analyzed, and the results will be presented later.

4. ANALYSIS RESULTS

This section will provide several types of analysis results that illustrate the effect of
load history on time dependent crack growth and fracture. The first topic discussed involved
observations of asymptotic fields that develop under cyclic creep. This is interesting, since
most work to date and most practical approaches to the creep crack problem are based on
asymptotic solutions using very simple constitutive relations. Here we compare some
asymptotic solutions using several types of constitutive laws, including classical and more
advanced creep models, which are capable of adequately predicting cyclic response under
creep conditions. The second topic briefly examines some integral parameters that are being
examined regarding their ability to characterize variable load creep crack growth. The final
analysis topic presents the results of the third creep crack problem illustrated in Fig. 4. This
test was analyzed throughout the entire 700 h test by using an appropriate constitutive law.
The performance of the integral parameters, as well as comparisons with experimental data,
is illustrated. Before this, a brief discussion of the computational tools used to develop
these solutions is provided.

4.1. Cons/ilulive laws andfini/e elemenl code
The creep behavior of metals under a constant sustained load is classified into three

phases: primary, secondary, and tertiary creep. In this work. which considers creep crack
growth under variable loads, tertiary creep is not considered, since it occurs only in a small
process region near the tip. The influence of the constitutive model used to represent time
dependent materials on the stress and strain fields in the vicinity of a crack tip has been
shown to be significant (Leung el al., 1988), euen for conslant sustained load. As discussed
in Section 2, upon stress reversal, a temporary increase in strain rate has been observed
that was due to strain softening. Classical time or strain hardening (S-H) creep laws, upon
which most of the current engineering approaches to predicting creep crack growth are
based, are incapable of predicting these phenomena. The next section will clearly illustrate
this. In the Inoue benchmark problems (Inoue el al., 1991), a model developed by Murakami
and Ohno (1982) and improved by Ohno el al. (1985) provided as good or better predictions
of a complex load response in the creep regime than more than ten different models. The
Murakami-Ohno (M-O) law has the advantage of having very simple material property
requirements. The mathematical structure and the complicated effort required to obtain
material properties for other recently proposed constitutive models render their use in
numerical analyses of the creeping crack problem cumbersome.

The constitutive law used for most of the creep crack growth analyses presented here
is based on the concept of a creep hardening surface (CHS) developed by Murakami and
Ohno (1982, 1985). This model is quite convenient since the material property requirements
consist of only the classical time hardening material constants (A, n, m), and the two Norton
law constants [A I, n 1 ; see eqn (1 )].

For the general multi-axial case, the creep strain rate in this model is given by:

(I)

where Su and (J are the deviatoric and equivalent stress, respectively. In eqn (1), q is given
by:

_ (f,~l - CL il )q - p+ _ 51/'
(J

(2)
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Fig. I. Photograph of experimental set-up. An instrumented compact tension-specimen is shown
here. The load pins go through the specimen. Note the spring-loaded extensometer entering the

furnace from the top. This was used to measure crack opening displacements.
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Fig. 2a. Load-time sequence applied to the first 9 Cr-Mo test. The initial crack size (ao) was
26.75 mm, and aD W = 0.527.

3.2 r----------------------,
9Cr-Mo, 2nd Test

28
E
E
c
Q)

~ 24

16
0.
Ul

is
2.0

End unload

Displacement
recovery

360 365355350345335 340330

1.6 '-_....J.._---1__...L..._....J.__..I-_.....I..__.l.-_...J
325

Time, hrs

Fig. 2b. Displacement-time history for first 9 Cr-Mo test between 325 and 365 h.

6r-------------------~

Maximum Load=31138 N
5

E
E 4

700600500400300200100

0'-_-l..__J-_......J.__...l-_--I.__..L_--J
o

Time, hrs

Fig. 3. Displacement-time history for second 9 Cr-Mo test. The load magnitude was identical to
the load of Fig. 2a, but only one unload at time of about 320 h occurred. The initial crack size, ao,

was 27.23 mm with ao/W = 0.536.

The evolution equations for the center of the yield surface r:l.iJ and radius p are given by:

~iJ = /J = 0 if g < 0 or (3)

with

if g = 0 and (4)



2198 F. W. Brust

W4hOU~
\ hold I

23,353 N+r-----i

5 minute hold ----j I---
Time

Fig. 4a. Load-time sequence for the third 9 Cr-Mo test.

.85

E
.80E

i
OJ
E .75
OJ

f6a.
(f) .70
is
c:
'0 .65a.
-g
.3 .60

.55

72 84 96 108 120

Time, hours

Fig. 4b. Load-point displacement versus time behavior between 72 and 120 h. Note in this specimen
crack growth began at about 192 h (aD = 23.75 mm).

4

E
E 3
i
OJ
E
OJ
0
CIla.

2(f)

is

24 25 26 27 28 29 30 31 32

Time, days

Fig. 4c. Displacement- time record for third test between the 24th and 30th days.



High temperature deformation and crack growth

where t];i is the outward normal vector to the CHS defined as

The CHS is given as

and

< 0 inside.

2199

(5)

(6)

The radius and center of the CHS therefore change only when the material state is on the
CHS (g = 0) and remain the same when the statc of creep strain is inside the CHS (g < 0).

From the evolution equations. it can be easily shown that q becomes e;; (the equivalent
creep strain) when stress reversals do not occur. Thus a principal advantage of this theory
is that it coincides with classical creep constitutive laws when they apply. All material
constants are therefore easily obtained from uniaxial creep data. which exist for most
materials.

When a stress reversal occurs, q of eqn (2) becomes small, which renders the creep
strain rates predicted in eqn (I) large. This accounts for large increases in creep strain rates
observed experimentally during stress reversals [see Murakami and Ohno (1982, 1985) and
Krishnaswamy et al. (1994)]. Classical laws upon which most creep fracture theories are
based cannot account for this effect. Plasticity is included in this model by assuming that
these strains occur over a very short time in evaluating the creep material constants.

A finite element (FE) algorithm using an implicit scheme has been developed for the
Ohno and Murakami constitutive model and discussed by Krishnaswamy et al. (1993,
1994). The implicit method used here has the advantage of ensuring a convergent and stable
solution for large time step sizes. unlike explicit integration schemes. The details of the
algorithm have been omitted here and may be found in the cited references. Numerous
comparisons using the implicit algorithm are compared with experimental data and with
strain hardening theory and are also presented by Krishnaswamy et al. (1994) with good
results.

The computational model for all analyses consisted of eight-noded isoparametric
elements using plane stress or plane strain assumptions. Crack growth was modeled by
using a node release technique whereby the nodal forces at both nodes in the particular
element through which the crack is growing are released simultaneously over a period of
time. The integral fracture parameters were calculated by using existing element shape
functions and nodal averaged field quantities using a direct approach (i.e. a domain integral
approach, which is convenient for three-dimensional problems, was not used). The analysis
of the third experiment (Fig. 4) required a great deal of effort on a Cray computer system.

4.2. Asymptotic obsermtions
Most practical methods for predicting the lives of cracked structural components that

operate at temperatures at which creep occurs are based on a series of asymptotic solutions.
These solutions were developed by using simple constitutive laws and are, for the most
part, strictly valid for monotonic load-hold conditions [see Goldman and Hutchinson
(1975), Riedel (1981), Riedel and Rice (1980). and the summaries provided by Riedel
(1987)]. [Note that Riedel (1987) does provide an asymptotic solution for cyclic loading by
using Norton's creep law, but the usefulness of this solution is unclear since Norton creep
is inaccurate under cyclic load conditions.] Saxena and Han (1986) and Saxena (1991) (and
many references cited therein) then developed engineering methods based on parameters
that characterize the strength of these fields. In the following examples, we illustrate that
the structures of these near tip fields change with time and load cycles, precluding the use
of a single asymptotic strength parameter for cyclic load applications.

SAS 32-15-F
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Pm,,, = 10 k~ for the 304 SS analysis. and Pou" = 23.353 for the 9 erMo analysis.

Asymptotic solutions. The stress and strain fields near a crack tip are evaluated by using
both the classical strain hardening creep law and the Murakami-Ohno (M--O) law [eqn
(I)), the former of which is a special case of the M-O law. Cyclic loads are considered
and the solutions are developed numerically by using the above-described finite element
methodology. Only the first terms in eqn (I) are used since the primary creep term dominates
during load changes.

Consider a standard compact tension specimen with crack length a = 23.75 mm and
uncracked ligament length c = 27.05 mm. A finite element analysis of this specimen was
performed by using creep properties of both 9 Cr-Mo Steel at 538C and 304 stainless steel
(SS) at 650'C. The applied load spectrum is shown in Fig. 5. Note from Fig. 5 that an
R = 0 and an R = -0.5 spectrum were both used. This spectrum was applied up to 99
total hours. This means that the ends of the load-hold periods were 24, 49, 74, and 99 h
while the ends of the unload-hold periods were 25, 50, and 75 h (four load and three unload
periods). The material properties are:

A = 7.09 X 10- 17
, n = 5.6, m = 0.24 (9Cr~Mo)

A=3.l0xlO- IY
, n=7.2, 111=0.54 (304SS)

for stress in MPa and time in hours. These same constants are used for a strain hardening
law and for the Murakami-Ohno cyclic creep law.

The symmetric finite element mesh was a focused mesh with ten rings of six-noded
isoparametric triangular elements surrounding the crack tip and eight-noded elements
elsewhere. The element size at the crack tip is about 0.00048 c, which is about two-and­
one-half times more refined than the mesh used by Shih and German (1981) in their studies
of HRR field dominance.

Figure 6(a) provides a plot of the shear creep strain rates just after two of the unload
periods for the 304 SS with the R = 0 spectrum. This is a plot of t rll as a function of angle,
0, at a constant radius of 0.086 mm from the crack tip (standard crack tip polar co-ordinate
definitions are used, with e= 0 ahead of the crack tip, and () = n along the crack faces).
This distance corresponds to about the seventh ring of elements away from the crack tip.
Immediately afterwards the unloads occur at the first unload (time = 24+h) and third
unload (time = 74+h), large stresses develop, which emanate from the crack tip. These
stresses are relaxed with rather large creep strain rates. From Fig. 6(a), the maximum shear
strain rates occur at an angle of about n12, and it is clear that using a classical strain
hardening creep law greatly underpredicts these strain rates. Figure 6(b) shows the shear
creep strain rates at the end of the I-h unload-hold period. Note that the position of
maximum strain rate has shifted to about I radian. The strain rates have relaxed sig­
nificantly; however, the rates from the Murakami-Ohno law are still higher than those of
the classical law. All other components of creep strain rate exhibit a similar behavior at
this location, and at all other locations.
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Figures 7(a)-7(c) show the () component of stress at an angle ofzero, also as a function
of distance ahead of the crack tip. Figures 7(a)-7 (c) show the stresses at the end of the hold
times for 304 SS; R = 0, 304 SS; R = -0.5, and 9 Cr-Mo; R = 0 cases, respectively. Note
that these plots show stresses versus log(r). The solutions for the Murakami-Ohno case,
which has much better capability for modeling stress reversals, appear linear on these plots.
Although certainly not proven here, it appears that the asymptotic fields behave as:

(7)

In fact, this apparent logarithmic singularity appears to dominate over a very large distance,
and, at least for these cases, does not change with cycle. On the other hand, the stress field
when a strain hardening law is used appears to vary as a function of cycle number. Note
also that the differences between the SH and M--O solutions increase as the cycle number
Increases.

Figures 8a and 8b show the accumulated strains (E:o at (-} = 0) for the 9 Cr-Mo case, at
the end of the unload-hold periods (times 25, 50, 75 h), and at the end of the load-hold
periods (times 24, 49, 74 h). respectively. The differences between the S-H and M-D
solutions increase as the number of cycles proceeds. Moreover, the strains at the end of the
load-hold times are close, independent of the number of cycles for the S-H model. Note
that these are the total accumulated creep strains, obtained by integrating the creep strain
rates throughout the load history, as appropriate. An interesting observation can be made
regarding the results of Figs 6-8. The stresses tend to be higher when a strain hardening
law is used than when the Murakami-Ohno law is used, whereas the creep strains are lower.
This can be explained as follows. During the load changes, the creep strain rates are greatly
under-predicted by using a strain hardening law, whereas they are adequately predicted by
using the Murakami-Ohno law. Because of this. the stresses do not relax after load path
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changes as much as they should when a strain hardening law is used. At the same time, the
corresponding creep strains do not accumulate as rapidly as they should when strain
hardening theory is used.

Further comments are in order regarding Figs 7 and 8. It is well known [see Riedel
(1981, 1987)] that the asymptotic stresses and strains are of 0 [[1 /(n + I)} and 0 {(n/(n + I)},
respectively. When Figs 7 and 8 are plotted on a log-log scale, this means that the
stresses and strains will plot as straight lines with a slope of {l!(n+ I)} and {n/(n+ l)j,
respectively. These slope values are indeed observed before unloading occurs, i.e. at time
less than 24 h. At the end of the unload/reload sequences (times = 49, 74,99 h), the stresses
when a Murakami-Ohno creep law is used are not inconsistent with a slope of {l/(n+ I)}
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over a short region. However, the region of dominance of this field is much smaller than
the logarithmic singularity. The creep strains of Fig. 8 (with the Murakami-Ohno law),
when plotted on a log-log scale, do continue to drift from a slope of {n/(n + I)} after each
unload/reload cycle, although they are linear over a short range on these plots. For instance,
the slope changes from {n!(n + I)} = 0.85 after a time of 24 h to 0.91 after 99 h (three
unload/reload sequences).

The results of this section raise questions regarding the use of the classical approach
to creep fracture problems when the cracked structure experiences cyclic loads. The classical
approach performs well under constant load conditions. However, under history dependent
loading conditions, the asymptotic fields with a strain hardening constitutive law change,
perhaps after each load cycle. Classical approaches to creep fatigue life predictions assume
that crack growth may be assumed to consist of a fatigue portion and a creep crack growth
portion [see, for instance. Jaske (1985)], i.e. Miners rule is used. The contributions of
fatigue and creep are assumed to be uncoupled. Since the classical approach to creep crack
growth correlates crack growth rates with the strength of the asymptotic fields, and the
asymptotic fields change with load cycles, one cannot expect this same rate parameter to
perform well under these conditions. ln other words, using a parameter which is based on the
strength of an asymptotic field may not bc adequate when the asymptotic fields continually
change. Moreover, since these asymptotic fields are developed by using constitutive laws
that are inadequate under cyclic load conditions. one cannot expect the strength of these
fields to have meaning outside their range of validity. With these concepts in mind, we
proceed by defining and using cncrgy-based paramcters in thc simulations of creep crack
growth experiments, which will be discussed later. Before showing these simulations, these
alternative parameters are briefly discussed.
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4.3. Energetic or integralji'acture parameters
Making a choice as to which fracture parameters to focus on when attempting to

characterize variable load or history dependent creep crack growth is difficult. We can label
the different types of approaches as asymptotic approaches, damage or local approaches,
and energetic or integral approaches. Asymptotic approaches are not considered here for
reasons summarized above. Local or damage-based approaches, summarized in the recent
book by Lemaitre and Chaboche (1990) and the numerous references cited therein, are
very useful for predicting crack nucleation for all types of problems, including creep. For
crack problems, however, there appears to be a difficulty. The procedure for both coupled
and uncoupled damage theories consists of (i) developing the critical material parameter,
Dc (scalar or tensor), and (ii) determining a critical length parameter, 10' i.e. the degree of
finite element refinement near the crack tip, so that experimental behavior is predicted. This
same critical dimension is required for all other analyses. Because damage localizes at the
crack tip, one finds that predicted results become more and more conservative as the mesh
becomes more refined. This is because the finer the mesh, the greater are the stress and
strain magnitudes and gradients near the crack tip become [see Giovanola and Kirkpatrick
(1992) for example]. This type of behavior renders such methods, in the view of this author,
to be insufficiently general to extend their use to history dependent creep fracture problems.
The approach considered here is based on integral parameters. A general summary of this
type of approach has been provided by Kim and van Stone (1992) and for creep problems
by Brust and Majumdar (1994). For completeness, a summary of integral approaches is
provided here.

Integral parameters. A number of integral parameters have been defined in recent years
for application to non-linear fracture mechanics. Blackburn (1972) defined an integral, lB'
the i-integral was defined by Kishimoto et al. (1980), and other integral parameters have
been suggested by McClintock (1971), and Watanabe (1985). Cherepanov (1967) first
defined the r-integraL which was later called !J.T* and T* integrals by Atluri (1982),
Nishioka and Atluri (1983), Brust et al. (1985,1986), Brust and Atluri ((1986), and Brust
and Majumdar (1994) in the context of creep fracture). A review of these integrals has
recently been provided by Cherepanov (1989), and a review of a number of other integral
parameters has recently been provided by Kim and Orange (1988) and Brust et al. (1989)
in the context of thermal gradients.

The definition of the integrals in the notation defined below is:
Blackburn (1972) :

Kishimoto et al. (1980) :

i= r (Wcnl-t,u,l)dr;..

(8)

(9)

Cherepanov (1967), Atluri (1982), Nishioka (1983), Nakagaki (1985), and Brust (1985):

McClintock (1971) :

T* = r (Wn I - t,u, I ) dr ;J. (10)
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Fig. 9. Crack length versus time behavior for the test in Fig. 4a. The finite element model was forced
to follow this crack growth relation.

J'y1 = r (- t,U,.I) dr ;Jr,

Watanabe (1985) :

(11)

(12)

In eqns (8)~(l2), the integrals are integrated along a line path defined as C. The path shape
and other practical considerations are discussed by Brust and Atluri (1986) and Brust and
Majumdar (1994), and in many references cited therein. In eqns 8~12, u, 1:, and Ii are the
stress, total strain, and unit normal to the path, respectively, with XI' and X 2 parallel and
normal to the crack growth direction, respectively; t, is the traction at the path point (Ii' u),
u are displacements, and W is the stress work. The parameter We in eqn (9) is the elastic
stress work. Note that T* = JM +Jw always.

The physical interpretation of the T*-integral is as an approximation of energy flux to
the crack tip region and, as such, depends on the size of the path chosen, i.e. rl' Detailed
discussion regarding the physical significance of the integrals, the path size, and other
important considerations is provided by Brust and Majumdar (1994) and Brust et al.
(1985).

4.4. Analysis oj' an experirnen t

The experiment discussed above and illustrated in Fig. 4 was modeled in its entirety.
The load spectrum of Fig. 4(a) was applied. The experimentally determined crack growth
versus time relationship shown in Fig. 9 was also imposed. The finite element mesh utilized
is illustrated in Fig. 10. The side groove depth in these specimens was 20% of the thickness.
(The nominal thickness was 25.4 mm.) Plane stress solutions were performed, since the
creep zones were large here. The loads illustrated in Fig. 4 are the total applied load. The
adequacy of this degree of mesh refinement was verified in two ways. First, several constant
load cases were analyzed, and the C*-integral and the C;-integral [respectively, for analyses
using the second and first terms of eqn (I) only] were evaluated numerically and compared
with handbook solutions. Secondly, two identical analyses were performed by using the
extremely refined mesh used to produce the asymptotic solutions for Section 4.2, and the
mesh of Fig. 10 over the first 192 h of this test, before crack growth began. The crack
initiated 192 h after the test began. All of the integrals discussed above were evaluated on
numerous paths for both meshes. The numerical values of the integrals compared within
I % for path sizes greater than 0.3 mm. By observing Fig. 10(b), this means that we can
expect numerically accurate results outside a buffer zone of about two elements outside the
crack tip.
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y

Lx

Initial crack tip J
Fig. 10. Finite element mesh uscd to model test. (a) Overall mesh. (11) Mesh blow-up near the crack

tip. The elcments near the crack tip arc O. J 5-mm-squarc elements.

The material properties were those listed in Section 4.2 for the 9 Cr-Mo steel at 538 0

C. The two other constants needed to utilize eqn (I) are:

AI = 1.362x 1O-51l. III = 18.86

for stress in Mpa and time in hours.
Figure II (a) shows the compressive stress immediately after unloading at t = 343 h,

i.e. before stress relaxation occurs. The finite element grid is shown so that the reader can
obtain a feel for the size scales involved. Recall that the elements near the crack tip are
square with a side length of 0.15 mm. The contour levels shown in these figures represent
the magnitudes at the outside er~qe of the shading (the large stress gradients should be clear).
Figure II (b) shows the stresses after creep relaxation has occurred after the O.I-h unload­
hold period. Note the significant size of the compressive zone. Comparing compressive
residual stress zone sizes at later times and comparing these with Fig. II, one observes that
the magnitudes of the compressive stresses after relaxation are continually increasing as the
crack size increases. as expected.

Figure 12 shows the size of the compressive u, zone behind the wake of the growing
crack at a time of 628 h. This is at a time when the full load is on the specimen, and the
crack has just completed growing through an element. Such a compressive wake zone is
known to exist for elastic-plastic growing cracks [see, for instance. Rice et al. (1980)]. and
here it is shown to occur for growing creep cracks. The known asymptotic solutions for
growing cracks using simple constitutive laws also exhibit this compressive wake zone
feature [(see Riedel (1987), for instance)] for plane stress. but not for plane strain. The
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Fig. II. Contour plots of G, near the time of 343 h. The contour levels represent the values at the
outermost border of the shade. The size of the elements along the crack growth direction near the
tip is 0.15 mm along the side. (al Stresses just after unloading. before stress relaxation occurs. (b)

Stress after the O.I-h unload-hold period of relaxation has occurred.

compressive zone size seen here is much larger than that predicted from asymptotic solu­
tions. The stresses in this zone are not insignificant, with a maximum stress in the com­
pressive wake shown in Fig. 12 of -300 Mpa.

Displacement comparisons. The experimental and analytically predicted displacements
are compared over the first 192 h of the test, before crack growth begins, in Fig. 13. The
extremely refined mesh used in Section 4.2 was used for these predictions. The experimental
results are slightly higher than the predicted values. Note that, for the analysis, the crack
was assumed to begin growing at a time of 192 h after the beginning of the test, However,
as indicated in Fig. 13, small amounts of crack growth actually occurred before this time,
which, in part, accounts for the underprediction of the analysis. An analysis assuming
a constant load is also plotted here. showing that there is a continual drift upward of



2208 F. W. Brust

t=628 hr
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Fig. 12. Compressive wake zone for the growing creep crack. The maximum stress is - 300 MPa in
this region.
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Fig. 13. Comparison between experimental and predicted load point displacements for the 9 Cr­
Mo test before crack growth. The lower curve represents results for the constant load case.

the variable load solution owing to the increased strain rates that develop after each
cycle.

Figures 14(a)-14(c) show some of the details of the displacement comparisons over
shorter time periods. Figure 14(a) shows what happened very early in the test. The precise
load history shown in Fig. 4 was not strictly followed in this particular test. There were a
few times during the test where the load was held longer than 24 h before unloading. (It
will be clear in some of the later figures when this occurred.) At the beginning of the test,
some differences also occurred. A load of 19.94 kN was first applied to the specimen and
held for 0.05 h. The specimen was then unloaded and held for 0.033 h before loading to
23.353 kN and following the general sequence of Fig. 4. (This was done to provide a check
on the experimental set-up.) This means that the first unloading actually occurred about 5
min after the start of the test. Figure 14(a) details the displacements over the first 2 h of
the test. Note the effect of the first unload cycle on the displacement predictions. It is also
clear here that the displacement rates due to the first cycle of load increase significantly
compared with having no cycle. Figure 14(b) details the displacements between 110 and
180 h after the test began. Note that the displacement rates after an unload cycle are greater
than those before the unloading. This effect becomes more important after crack growth
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placement comparison for the unload-reload cycle at time = 438 h,

commences, as will be shown shortly, and was discussed relative to Figs 2 and 4. Figure
l4(c) shows displacement recovery at a time of 168 h.

Figure 15 shows the predicted and experimentally determined displacements over the
entire test. Figure 15(a) shows the maximum displacements, i.e. at the end of reload and
hold periods, throughout the entire test. The experimental and predicted displacements
compare quite well until about 600 h. After this time, the predicted displacements over­
predict the experimental values. This overprediction after 600 h essentially means that
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failure was predicted a little earlier analytically than tre experimental results showed. The
experiment showed that the displacements began to rise sharply at about 650 h, prior to
failure at about 710 h. This difference between the analysis and experiment may be due, in
part, to the use of a plane stress assumption for the analysis. Figure 15(b) provides a
comparison of the minimum displacements, i.e. at the end of the unload-hold periods.
Again the comparison is quite reasonable. Figure 15(c) shows a detail of predicted and
experimental displacements during the unload that occurred in the 438th hour of the test.
Here the displacement recovery and the reduced displacement compared with the values
before unloading, and the increased displacement rates due to the cycle are evident. Note
from Fig. 15(a) that this comparison at a time of 438 h is made for the time when the
difference between prediction and analysis is nearly the maximum for times less than 600
h. The results of Fig. 15 give us confidence that the numerical model compares reasonably
with experimental data. The predictions provided next for the integral parameters are
therefore likewise considered to be reasonably accurate.

Integral parameters. The behavior of the integral parameters is somewhat different
before and after crack growth. Let us first look at the behavior for a constant load case
with no crack growth b::fore providing the predictions of the integrals for this particular
test. Consider loading the compact tension specimen to 23.353 kN and holding it for 2000
h. The integral parameters should be path independent in the region of dominance of the
asymptotic fields if the fields are separable and if terms like (J' e are of O(1/r) [see Willis
(1975) and Moran and Shih (1987)]. Figure 16(a) shows the behavior of the T*-integral
evaluated on four paths of radius R = 0.3, 0.45, 0.6, and 0.8 mm. These paths are circular
in shape and traverse the stationary crack tip. (The refined focused mesh used for the
asymptotic studies was used for this constant load case only.) This figure suggests that the
integrals are independent of path. In fact, all the integral parameters behave this way,
including Jw and JM , even though these two integrals are not path-independent even for
the elastic problem. This suggests that the region of dominance of the asymptotic fields is
quite large. This observation of a large zone of dominance for the asymptotic field was also
made in Section 4.2, which examined the asymptotic fields themselves. Indeed, this is an
alternative technique to determine the region ofdominance of the asymptotic fields. Observ­
ing Figs 16(b) and 16(c), however, note that both T* and Jw are not path-independent.
Figure 16(b) is actually a blow-up of Fig. 16(a) over the first 10 h. The initial load is
applied elastically, this being followed by the relaxation of the elastic singularity via creep
deformation. Apparently, the conditions for path independence discussed above are violated
for a very short period of time (less than about 0.05 h). One can see that the integrals are
path-dependent for early times, and then the same difference between the paths is maintained
over the rest of the analysis. Since:

T* = oil t* dt (13)

throughout the entire load history, it is clear that the integral rates are path-dependent for
a short period after application of the load, after which the rates of the integrals become
path-independent. This effect was checked by using several different mesh refinements, and
several different degrees of time step refinement, and appears to be real.

Now we return to the analysis of the experiment of Fig. 4 and discuss the behavior of
these integral parameters during cyclic loading. Figure 17a shows the behavior of the Jw ­

integral for the variable load case, also evaluated along four different-sized circular paths
emanating from the stationary crack tip. These plots show the first 192 h of the test analysis
results, before crack growth commences. Several interesting observations can be made. (i)
After each change in load path, a step function increase in the integral occurs. (Note here
that the first unload actually occurred after only 0.05 h of testing; hence, large differences
between the paths are observed early.) Such a step function change suggests that the unloads
induce increased damage to the crack tip region. (ii) The value of the integral is larger as
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Fig. 17c. Behavior of T*-integral for unloading at { = 144 h. Crack growth has not begun as yet.

the size of the path becomes smaller. In addition, it is clear that the integral is becoming
more and more path-dependent, further suggesting that the asymptotic fields change,
perhaps with each cycle, and further violate the conditions for path-independence in the
region of asymptotic fields (i.e. separable fields, etc.). It should also be mentioned that the
rates of Jw are also path-dependent even near the end of each of the reload-hold (24-h)
periods. Clearly, these results, coupled with those presented in Section 4.2, suggest that the
classical approach to creep fracture, i.e. the search for the strength of an asymptotic field,
may not be practical under variable load conditions since the crack tip fields change
significantly as unloads take place. The trends illustrated in F(q. 17a occur/or allfive integrals
considered here.

Figure 17b shows the T*- and Jw·integrals for a path radius of 0.45 mm for both the
variable load and the constant load cases. Note that the T*-integral decreases during an
unload (see also Fig. 17c), whereas Jw does not. The constant load values of the integrals
are also shown in Fig.17b. The effect of the unloads is to increase the crack tip severity if
these integrals are crack tip characterization parameters. Finally, the behavior of the T*­
integral after an unload/reload sequence can be observed in Fig. 17c. Figure 17c shows an
enlargement of the unload performance of the T*-integral at a time of 144 h. Immediately
after reloading, the integral attains a large value, which reduces very rapidly over short
times to a steadily increasing value. All integrals behave in this way for the stationary crack
problem. For the growing crack, this effect is not seen. It is believed that this is an artifact
of the Murakami-Ohno constitutive law used. The plots of the integrals as a function of
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time do not include these large spikes. which occur over very short times after reloading.
Rather, the first integral value plotted is typically after about 0.1 h after the reload-hold
time begins to eliminate this artifact.

Figure 18 compares all the integral parameters as a function of time. This is for a value
of the path size equal to 0.45 mm. Brust and Majumdar (1994) discuss the practical
evaluation of these parameters in detail for the growing crack problem. The T*- and Jw­

integrals both experience a step jump after each cycle, as discussed earlier, before crack
growth begins. The JIl-, J-. and JM-integrals also do so, but to a much smaller extent. Note
that the J"l and J parameters are almost identical. This is because the We term in J, which
is the elastic stress work, is very small. as it is for nearly all non-linear problems [see eqn
(9)]. Also observe that the experimental scheme of Fig. 4 is not strictly adhered to, since
several times 48 h elapsed, and once 72 h, before an unload cycle. Further note that the
T*-integral attains a nearly constant value (close to the nucleation value) throughout the
entire time history (between 100 and 130 k.J /m= _as indicated by the lines in Fig. 18). This
suggests that a constant value of T* may characterize crack growth under creep fatigue
conditions. The same comment applies to J w .

The T*- and Jw-integrals are plotted as a function of the path size in Figs 19a and
19b, respectively. These figures show the values of the integrals at the end of the hold
periods only. It may be seen that. before crack growth occurs, the paths closest to the crack
tip maintain larger magnitudes than the larger paths. After crack growth, however. a trend
in the opposite direction begins. with the larger paths giving slightly larger values. The
larger values after crack growth are expected because of the interpretation (discussed in
Section 4.3) of the integrals as an energy loss per unit crack extension, to a finite-sized
region (i.e. the value of the path size R) in the vicinity of the growing crack tip. The larger
R is, the greater is the energy that may be deposited into the crack tip region. Values for
the path size of R = 0.3 mm. which is probably too close to the crack tip, and subject to
numerical errors. were not plotted here. The values of the integrals. especially after crack
growth begins, are nearly independent of the path size. This is a very important result
because it suggests that we may choose any value of R for our definition of the resistance
curve, as long as R is small enough to capture the energy losses due to the crack only. For
practical application of these parameters, the largest value of R that is feasible is desired in
order to minimize computational costs.

It is also important to comment that the values of these integrals are independent of
the finite element grid size chosen. For instance. if the same analysis is performed by using
a grid twice as refined as the mesh used here. and the integrals are calculated on the same
size of paths as those used here (i.e. R = 0.45. 0.6, etc.). the same resistance curve is
obtained. This was shown here for the stationary crack portion of the analysis by using the
meshes of Section 4.2 and Fig. 10 and was demonstrated by Brust et al. (1985), using four
different meshes for the elastic-plastic crack growth problem.
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instability point for this analysis compares reasonably well with the experimental results,
especially considering the two-dimensional nature of the analysis.

The nearly constant saturation values for T* and Jw during crack growth suggest that
these parameters may be used as a creep fracture parameter for cyclic creep. The fact that
they are not perfectly uniform is due to three-dimensional crack-growth effects and the
plane-stress assumption. Moreover, errors in crack growth measurements can certainly
affect results. However, this suggests that these integrals may be used to predict crack
initiation as well as growth by using the value at initiation throughout the history. In
addition, creep crack nucleation and reinitiation may also be predicted. The JM-integral
may likewise be used, with its resistance curve continually increasing. However, because
the T*-integral has a physical interpretation, it may be the most useful of the parameters.
Crack nucleation or crack reinitiation during history dependent loading would be predicted
by using this constant value of the resistance curve of Fig. 20a.

5. CONCLUSIONS

The subject of creep-crack growth behavior under variable load conditions was inves­
tigated here. The importance of large creep strain rates which develop after stress reversals
was shown to have a strong influence on the deformation response of a cracked creep
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specimen. Classical creep-crack approaches for variable load creep-fatigue conditions were
critically examined. It was determined that such approaches, which are based on obtaining
the strength of asymptotic crack tip fields, may not be sufficiently general because the fields
appear to break down and change as the number of load cycles increases. The possibility
of using alternative integral fracture parameters for characterizing the variable load creep­
crack growth process was examined. While certainly not conclusive, the potential for using
these alternative parameters for characterizing this complex process of crack behavior
appears promising. Further work is necessary, is ongoing, and will be reported in the near
future.
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